37 research outputs found

    Interactively Test Driving an Object Detector: Estimating Performance on Unlabeled Data

    Full text link
    In this paper, we study the problem of `test-driving' a detector, i.e. allowing a human user to get a quick sense of how well the detector generalizes to their specific requirement. To this end, we present the first system that estimates detector performance interactively without extensive ground truthing using a human in the loop. We approach this as a problem of estimating proportions and show that it is possible to make accurate inferences on the proportion of classes or groups within a large data collection by observing only 5βˆ’10%5-10\% of samples from the data. In estimating the false detections (for precision), the samples are chosen carefully such that the overall characteristics of the data collection are preserved. Next, inspired by its use in estimating disease propagation we apply pooled testing approaches to estimate missed detections (for recall) from the dataset. The estimates thus obtained are close to the ones obtained using ground truth, thus reducing the need for extensive labeling which is expensive and time consuming.Comment: Published at Winter Conference on Applications of Computer Vision, 201

    MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis

    Get PDF
    Interpretability has emerged as a crucial aspect of machine learning, aimed at providing insights into the working of complex neural networks. However, existing solutions vary vastly based on the nature of the interpretability task, with each use case requiring substantial time and effort. This paper introduces MARGIN, a simple yet general approach to address a large set of interpretability tasks ranging from identifying prototypes to explaining image predictions. MARGIN exploits ideas rooted in graph signal analysis to determine influential nodes in a graph, which are defined as those nodes that maximally describe a function defined on the graph. By carefully defining task-specific graphs and functions, we demonstrate that MARGIN outperforms existing approaches in a number of disparate interpretability challenges.Comment: Technical Repor
    corecore